Cooperative Quantum-Behaved Particle Swarm Optimization with Dynamic Varying Search Areas and Lévy Flight Disturbance
نویسنده
چکیده
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملAn electoral quantum-behaved PSO with Lévy flights for permutation flow shop scheduling problem
Permutation flow shop scheduling problem (PFSSP), a NP-hard combinatorial optimization problem, has strong engineering background of finding the optimal processing sequence and time of jobs on machines under the constraints of resources. Recently, several approaches based on Particle Swarm Optimization (PSO) have been developed to solve the PFSSP, and the experimental results show that they are...
متن کاملA hybrid cooperative quantum particle swarm optimizer with dynamic varying search area for function optimization
This paper proposes a hybrid cooperative quantum particle swarm optimization (HCQPSO), hybridizing dynamic varying search area, cooperative evolution, simulated annealing and quantum particle swarm optimization (PSO) for function optimization. In the proposed HQCPSO, a technique of dynamic varying search area helps reduce the search spaces and populations of swarms, which could make the optimiz...
متن کاملAn Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPS...
متن کاملDynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation
This paper proposes a dynamic-context cooperative quantum-behaved particle swarm optimization algorithm. The proposed algorithm incorporates a new method for dynamically updating the context vector each time it completes a cooperation operation with other particles. We first explain how this leads to enhanced search ability and improved optimization over previous methods, and demonstrate this e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014